COAXIAL CABLE AND RF CONNECTORS FOR HAM RADIO

PRESENTATION TO THE DESERT RATS

NOVEMBER 2021

E. DAUSMAN, KD7DNM

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

SEARCHING FOR "DESSERT" RATS

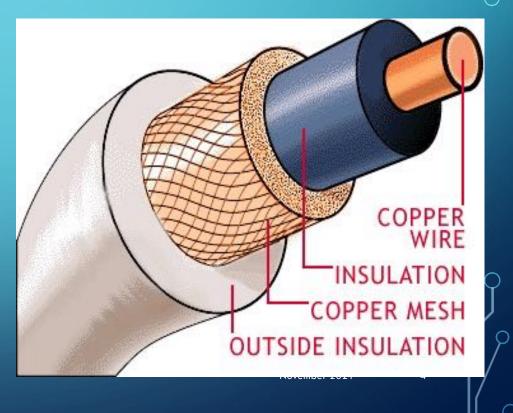
• Here is what came up!

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

OVERVIEW

- Briefly review coaxial cables, why they are necessary, various types
- The reasons we need RF connectors
- The various types of connectors
- The reason for the various names given to connectors
- The reasons why connectors do not work for all ham radio bands
- Various performance characteristics of cables and connectors
- Adapter cables for various radios to extend antenna


COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

ENTER COAXIAL CABLES

- Coaxial cable was invented by the English engineer Oliver Heaviside in 1880.
- AT&T invents modern coax cable in 1929 to send telephone calls between major cities
- RG stands for Radio Guide; it was the early US standards group

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

COAXIAL CABLE PHYSICS

- RF frequencies travel on the surface of a conductor
- If you surround the conductor with a tubular conductor, the energy propagates without radiating
- To do this efficiently, the coaxial cable "impedance" needs to be matched to the equipment at each end

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

The Math: Coaxial cable

 $\sum_{r=1}^{\frac{1}{2b}} Z_{O} = \frac{138}{\sqrt{\epsilon_{r}}} \times \log\left(\frac{a}{b}\right)$

- Z_0 = characteristic impedance in ohms
- *a* = outside radius of inner conductor
- b = inside radius of the outer conductor
- ϵ_r = dielectric constant of the insulating material between inner and outer conductors

IMPEDANCE

- The measure of the opposition that a <u>circuit</u> presents to a <u>current</u> when a <u>voltage</u> is applied.
- Measure in ohms
- It depends upon the frequency of the sinusoidal voltage.
- <u>Best Practice: Make sure you match impedance of interconnected equipment as</u>
 <u>closely as possible</u>

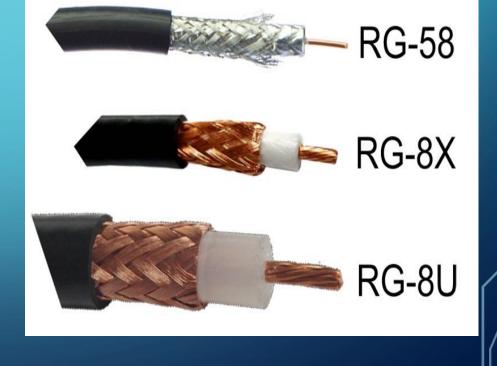
COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

COAXIAL (OR COAX) CABLE

In general:

- Hams usually use 50 ohm cable but 75 ohm has a place in HF
- The larger the diameter of the coax, the lower the loss
- The smaller the diameter of the coax, the higher the useful frequency
- Air cable has the lowest loss, but is really only suitable for permanent uses
- Modern low loss foam cables are a great compromise between loss and flexibility

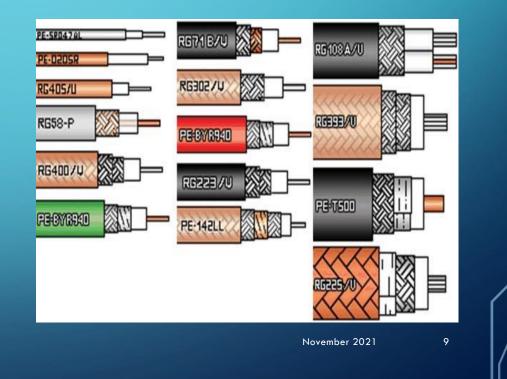

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

COAXIAL 50 OHM CABLES IN COMMON HAM USE

- Medium loss, very flexible, handles about 250 watts on HF
- Medium loss, very flexible, handles more power than RG-58
- Lower loss, less flexible, easily handles up to 1,000 watts on HF

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC



IN REALITY, THERE ARE HUNDREDS OF CABLE TYPES

Cable Type	Impedance	Typical Application	Best feature	Trade 011 Higher slipal loss than larger diameter cable such as RoSB Higher signal loss han larger diameter cable such as RoSS and higher cost than standard RoT24 Higher slipal loss than larger diameter cable such as RoSS and higher cost than standard RoT24		
IG174/U	50 0/nm	Transmission of data signals in applications such as \ensuremath{LWWAN} or \ensuremath{GPS}	Small diameter, flexible			
G188A/U	50 Ohm	Transmission of data signals in applications such as LANWAN or GPS in situations where high temperature performance is needed	Small diameter, flexible. High temperature rating of taped TFE cuter jacket			
G316/U	50 O'nm	Transmission of data signals in applications such as LANWAN or GPS in situations where high tomperature performance is needed	Small disimitar, flexible, High temperature rating of extruded FEP outer jackat			
658CU	50 0hm	Transmission of data signals in applications such as antenna feed cables or Ethernet backbones	Lower signal loss than smaller diameter cable such as RG174	Less flexible than smaller dismeter cable such as RG174		
61428'U	50 Ohm	Transmission of data signals in applications such as antenna feed cables or Ethemet backbones in situations where high temperature performance is needed	Lower signal loss than smaller diameter cable such as RG174. High temperature rating of extruded FEP jacket	Less flexible than smaller diameter cable such as RGT74 and higher cost than RG58C cable.		
659A/U	75 0hm	Transmission of a video or audio signal in applications such as security systems or OKTV	Lower signal loss than smaller diameter cable such as RG179. Flexibility of stranded center conductor cable	Higher signal loss than solid center conductor RG598/U cable		
556B/U	75 Ohm	Transmission of a video or audio signal in applications such as security systems or CATV	Lower signal loss than smaller diameter cable such as RG179 and RG56AU stranded center conductor cable	Less flexible than smaller dismeter cable such as RG179 or stranded canter conductor RG59A/U		
sevi	75 0hm	Transmission of a video or audio signal in applications such as security systems or CATV	Lower signal loss than smaller diameter cable such as RG179 and both RG59A/U or RG59B/U cable	Less flexible than smaller diameter cable such as RG179 and belh RG59A/U or R059B/U		
5223.U	50 0hm	Transmission of data signals in applications such as LANWAN or GPS in situations where box signal loss and high shielding performance is nesced	Lower signal loss and better shielding than smaller diameter cable such as RG174 or RGSBC/U cables	Less flexible than smaller diameter cable such as RG174 and higher cost than single shielded RG58C cable		
5213/0	50 0hm	Transmission of data signals in applications such as antenna teed cables in situations where low signal loss and high operating voltage performance is needed	Lower signal loss and higher operating voltage than RGS8C/U cable	Larger diameter and less flexible than RG58OU cable		
5179B'U	75 Ohm	Transmission of a video signal in applications such as security systems where high temperature performance is needed	Small diameter, flexible, High temperature rating of extruded FEP outer jacket	Higher signal loss and cost than larger diameter cable such as RG59		
3187/U	75 0hm	Transmission of a video signal in applications such as recurity systems where high temperature performance is used as	Small diameter, flexible, High femperature rating of TFE taped outer j/sk=1	Higher signal loss and cost than larger diameter cable such as RG59		

COP

RG Coax Cable Applications

Ø

BENEFITS OF COAXIAL CABLE

- Coax is not supposed to radiate your signal (some are better than others) and transfers most of the signal to the antenna depending on the length and loss
- Coax has a wide frequency range
 - In Ham Radio Terms, HF to Microwave
- Coax is flexible, it can be reused, and is generally water tight
- Coax is very easy to install and most cables can connect to a variety of connectors

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

COAX ATTENUATION

- Attenuation is the loss of signal over a give length of transmission line
- Low loss is always better, but always a cost vs.
 performance decision

Attenuation Chart													
Nom. Attenuation. Frequency in Mhz db/100ft													
Cable Type	10Mhz	30Mhz	50Mhz	150Mhz	220Mhz	450Mhz	900Mhz	1.2Ghz	2.4Ghz				
100 Series	2.3	3.9	5.1	8.9	10.9	15.8	22.8	26.7	38.9				
195 Series	1.1	2.0	2.5	4.4	5.4	7.8	11.1	12.9	18.6				
240 Series	0.8	1.3	1.7	3.0	3.7	5.3	7.6	8.8	12.7				
400 Series	0.4	0.7	0.9	1.5	1.9	2.7	3.9	4.5	6.6				
600 Series	0.2	0.4	0.5	1.0	1.2	1.7	2.5	2.9	4.3				
LMR-400-UF	0.5	0.8	1.1	1.8	2.2	3.3	4.7	5.5	7.9				
<u>RG142/U</u>													
<u>RG213/U</u>	0.6	1.2	1.5	2.8	x	5.2	7.3	x	x				
<u>RG214/U</u>	0.6	0.9	1.3	2.3	x	4.5	7.3	x	X				
RG223/U	1.2	2.0	2.8	5.0	x	9.8	13.4	x	x				
RG316/U													
RG393/U													
RG58A/U	1.5	2.6	3.3	6.8	×	12.6	21.0	x	x				
RG8/U (CXP1318FX)	0.5	0.8	1.1	1.8	2.2	3.3	4.7	5.5	7.9				
RG8X-Mini	1.0	2.0	2.3	4.7	X	8.6	13.0	x	x				

Cable Vnerts

www.cableexperts.com

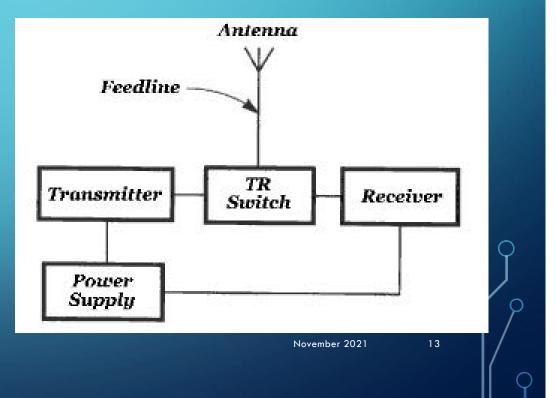
COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

WHY DO WE NEED RF CONNECTORS?

- Originally, coax was just soldered or bolted in place at each end of the coax
- We need a convenient way to get the RF in or out of a transmitter or receiver
- We need a properly designed coaxial connector to match the coax type
- These connectors make radio systems more flexible and easy to reconfigure
- Connectors allow for portable operation
- And there are hundreds of connector types to choose from! (Ugh)

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC


November 2021

TYPICAL RADIO SYSTEM

All ham radio systems have these things in common:

- A transceiver (or transmitter and receiver)
- A transmission line or feedline
- An antenna

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

TRANSMISSION LINE?

Where is the transmission line on your portable? What is the output impedance

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

COMMON CONNECTORS IN THE HAM WORLD

- Screw terminals
- UHF
- BNC
- N
- SMA
- Reverse SMA
- 7/16 DIN (for critical repeater system)

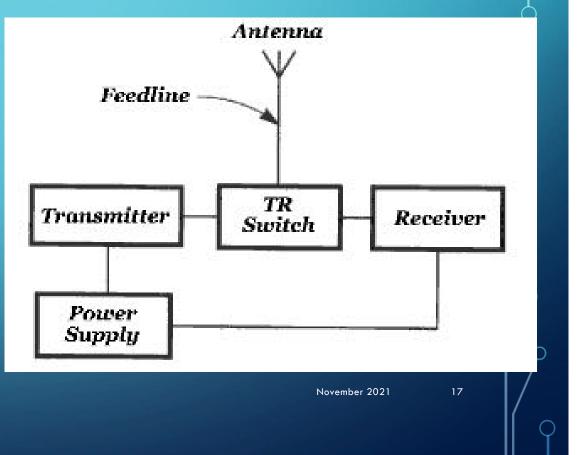
COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

WHERE DO THESE NAMES COME FROM?

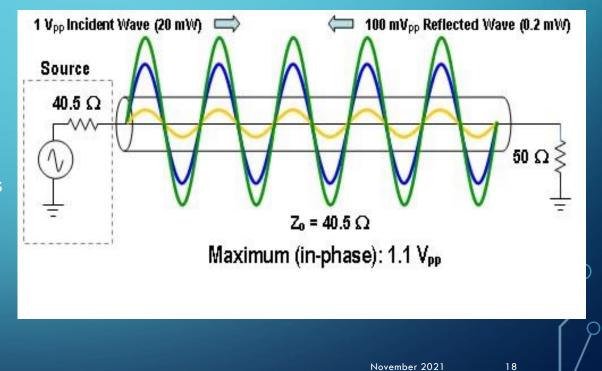
- Various manufactures over the last 75 years have come up with names.
- For example, the "N" connector was invented at Bell Labs in the 1930's by Paul Neill. They named it after his last name.
- The SMA connector is an abbreviation for: "Sub Miniature version A"

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC


November 2021

CASE STUDY— ROOFTOP ANTENNA FOR 144 AND 440 MHZ BANDS

You want to obtain:


- A transmitter that has a 50 ohm output impedance
- A low loss coax with a 50 ohm impedance
- And an dual band antenna with a 50 ohm impedance
- <u>If you do, it will all work</u> <u>fine</u>

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

ENTER IMPEDANCE MISMATCH

- Matching impedance of the transmitter, line, connectors, and antenna is important
- Mismatched impedance causes reflections and creates standing waves
- Reflections add loss, standing waves cause higher voltages!

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

SCREW TERMINALS

- The first connector was a screw or bolted connection
- These are still in use today on HF systems

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

SCREW TERMINALS

- Very useful for VLF (300 kHz to 3 MHz) and HF (3 MHz to 30 MHz)
- At these frequencies the wavelengths are so long, small changes in wire spacing makes insignificant difference to the performance of the system
- You can use coax <u>without</u> connectors up to 30 MHz with few performance problems as long as the impedance is matched
- Most HF antenna tuners have screw terminals in addition to UHF connectors

November 2021

UHF CONNECTORS--MALE AND FEMALE

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

UHF CONNECTOR

- The most popular connector in the Amateur radio world.
- Invented in the 30's as one of the first coaxial connectors
- Standardized during WWII by the Signal Corps as the PL-259 (plug) and the SO-239 (socket)
- Useful at 150 MHz and beyond with reduced performance
- UHF is a bad name as it is not really good at UHF frequencies as the impedance is not constant and causes loss
- Found on nearly all HF equipment and a lot of VHF equipment
- Can handle 1000 watts of power on HF
- Made for a lot of different cables and usually cheap (as low as \$1 each)

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

MINI UHF CONNECTOR

- Introduced in the 1970's for the original in car cell phones
- Popular on VHF and UHF mobile radios
- A good constant impedance connector
- Useful to 2.5 GHz but only with small sized cables
- It has a 500 volt rating, but power is limited by the small diameter cables it is designed for

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

BNC CONNECTOR

- This connector was invented around 1945
- The idea is to have high quality connector with quick connect/disconnect
- Very good constant impedance up to at least 2 GHz
- Made for most types of cables
- Power handling mostly depends on cable type
- Available in both 50 and 75 ohm types

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

N CONNECTOR

- Invented in the 1940's as a constant impedance connector useful to 1 GHz
- Later improvements allow it to pass signals up to 18 GHz
- It is one of the primary connectors for Ham Radio on UHF and above
- Most commercial transmitters and base station antennas designed for 150 MHz and above come with N connectors
- Typically, about 5-10 times the cost of a "UHF" connector

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

SMA CONNECTOR

- Named "Subminiature Version A (yes there is a Version B)
- Developed in the 1960's as a miniature connector for the aerospace industry
- Has excellent impedance characteristics and is useful to 18 GHz
- Became very popular on hand held radios after 2000
- Not high power due to small size

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

REVERSE SMA—MALE AND FEMALE CONNECTORS WITH AN IDENTITY PROBLEM?

Female Receptacle

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

REVERSE SMA

- Developed to meet the FCC requirements systems with integral antenna
- Theoretically, you could not change the antenna as typical SMA connector would not mate
- That lasted about 6 months and the industry started making all the mating connectors and adapters!
- A good connector useful up through the UHF range

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

7/16 DIN CONNECTOR

- Developed in Europe as a high power connector
- DIN is a German standards organization
- Now very popular in the US for cellular and wireless systems
- A very well designed high quality connector that can handle high power, typically over 1,000 watts, at UHF frequencies to 3 GHz
- Useful to frequencies in the microwave range

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

RIGHT CONNECTOR FOR THE CABLE

- Since there are hundreds of cables, there are hundreds of connectors
- The connector has to match the cable exactly to mount correctly and perform correctly and many require special tools
- If you want to build your own cables, ask for help the first few times to insure success
- <u>Best Practice: Premade cables are the way to go for those Amateurs who are</u> <u>"amateurs" at installing connectors or lack the tools</u>

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

OUTDOOR CONSIDERATIONS

- Connectors are not weatherproof
- Another best practice: Always weatherproof outdoor connections!

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

GENDERLESS CONNECTORS?

Yes. There are a few.
 These are made by
 General Radio, and they
 were very popular on their
 post war test equipment

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

ADAPTERS

- Since there are so many connectors, there are many more adapters to interconnect cables and equipment
- What adapters do you have?

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

ADAPTER KIT

- These are great kits to have
- They are useful for connecting nearly anything you find in Ham Radio
- Basic kits start around \$80

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

ADAPTER CABLES

- A cable assembly with different connectors at each end
- Used to jumper from one piece of equipment to another
- Useful to hook up a mag mount or roof antenna to our portables

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

TYPICAL ADAPTER CABLES FOR YOUR RADIOS

- Wouxun and Baofeng—SMA(M) to UHF(F)
 - https://www.amazon.com/DHT-Electronics-Kenwood-Handheld-Connector/dp/B00M5Z9N8I/ref=sr_1_6?s=electronics&ie=UTF8&qid=1515966497&s
 r=1-6&keywords=sma+male+to+uhf+cable
- Wouxun and Baofeng—Reverse SMA to UHF(F)
 - https://www.amazon.com/Handheld-handitalk-Antenna-Quasheng-Antennas/dp/B00IA9655M/ref=sr_1_15?s=electronics&ie=UTF8&qid=1515966155&s r=1-15&keywords=reverse+sma+cable

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

ADAPTER CABLES FOR YOUR RADIO

• <u>Best Practice: Use a cable made with a small diameter coax. Do not use an</u> adapter. The weight of a heavy cable can break the solder connection on your <u>antenna connector.</u>

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

WRAP UP

- There are lots of coax cable types used by Amateurs
- There are lots of connector types used by Amateurs
- Bigger diameter cable typically has less loss, but costs more
- Smaller diameter cables typically cost less, but have more loss
- Choose connectors based on the frequency range and VSWR you can tolerate
- Always match the connector to the cable to the cable type

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

| |

- Choose the right adapter cable for your radio if needed
- Adapters can be very useful to interconnect equipment

•Questions?

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021

Eric Dausman, KD7DNM

kd7dnm@arrl.net

Lake Oswego, OR 97034

COPYRIGHT 2021 C + E COMMUNICATIONS, LLC

November 2021