Solar Cycle 25 Update, Space Weather and Propagation

Cycle 25 is very awake!

Carl Luetzelschwab K9LA

e-mail: k9la@arrl.net

website: https://k9la.us

Agenda

- Quick update on Cycle 25
- Why are sunspots important?
- Space weather and propagation
- Disturbances to propagation
- Real-time assessment of the bands
- 10m long path

A Look at History

- Cycle 1 began in 1755
 - Maunder Minimum occurred from 1645-1715 with few sunspots
- We've gone through 3 periods of 'big' solar cycles
 - Cycles 1-4, 8-11, 17-23
- We've gone through 2 periods of 'small' solar cycles
 - Cycles 5-7, 12-16
- With Cycle 24, we appear to have entered a third period of small solar cycles

Will Cycle 25 get us out of this apparent third period of small solar cycles?

Predicting Solar Cycles

- I'm aware of at least 56 predictions for Cycle 25
- Why so many?
- Because we don't fully understand the sunspot cycle process
 - We know it has to do with how magnetic fields move inside the Sun and how plasma flows inside the Sun – but the nitty-gritty details are not yet fully clear
- Thus many methods are used to make a prediction
 - Precursor, spectral analysis, others

here's one of the many methods

The McIntosh Prediction

- Dr. Scott and colleagues have received much attention
- They are trying to understand the magnetic fields inside the Sun
- Original prediction in June 2020
 - Big cycle smoothed sunspot number about 233 (similar to Cycle 21)
- Revised prediction in August 2021
 - Average cycle about 190 (similar to Cycle 23) Cycle 24 termination event didn't happen when expected
- We shall see what happens
- I'm cheering for their method and revised prediction

Latest Cycle 25 Performance

- We now have 31 months of smoothed sunspot number data
- So far, Cycle 25 appears to be tracking the small Cycle 24

Day-to-Day Variation of the F2 Region

- We see the approximate 27-day rotation of the Sun
- Note the trend in the 81 day avg of solar flux and the trend in the 30 day avg of sunspot number

Day-to-Day Variation of the F2 Region

 Both trends (green lines) are increasing during each solar rotation

• Yay !!!

What Is a Smoothed Value?

- A smoothed sunspot number has been mentioned on several slides
- Count the number of sunspots each day – daily sunspot number (very spiky)
- Calculate average over a month monthly mean (still spiky)
- Calculate running average of monthly means over 12 months – smoothed sunspot number (spikes averaged out)
- Similar issue with 10.7 cm solar flux and EUV (extreme ultra-violet)
 - Daily correlation between sunspot number, 10.7 cm solar flux and EUV is not very good

- Above is one reason to use smoothed values gives a better picture of a solar cycle
- Second reason is because our propagation predictions are a correlation between a smoothed value and monthly median (50% probability) ionospheric parameters
 - We do not have <u>daily</u> predictions our predictions are <u>statistical</u> over a month's time frame

Why Are Sunspots Important?

- The white area around a sunspot is called a plage (French for 'beach')
- These areas emit EUV radiation
 - Sunspots themselves do not ionize anything (nor does 10.7 cm solar flux)
- EUV radiation ionizes the atmosphere at F2 region altitudes
- F2 region is responsible for most of our long distance QSOs
 - And most QSOs at night

Space Weather and Propagation – A Caveat

- What we're trying to do is make simple statements about propagation based on very complicated atmospheric and ionospheric processes
- Slide 9 stated that our propagation predictions are statistical in nature over a month's time frame – we do not have daily predictions
 - Why not?
 - There are three sources that cause the F2 region of the ionosphere to vary day-to-day – which determines how much ionization there is
 - Solar radiation (parameters: 10.7 cm solar flux, sunspots, EUV)
 - Geomagnetic field activity (parameters: K, A, Bz, solar wind)
 - Events in the lower atmosphere that couple up to the ionosphere we don't fully understand this last source – <u>no parameters</u> – lots of research ongoing
- Today's 10.7 cm solar flux may not tell us what's going on right now

What We Desire for SFI, SN and K

- We need two conditions for a QSO to occur
 - Enough ionization (MUF) to refract the signal back to Earth
 - Low enough loss (absorption, FSPL, antenna gains, transmitter power, receiver MDS, gnd refl loss, local noise) to make the signal readable (or detectable)
- What we desire for good MF and HF propagation
 - Generally $K \leq 3$
 - Correlates to Bz pos or slightly neg, solar wind not too much higher than 400 km/sec
 - SFI and SN
 - 15m: need SFI > 90 and/or SN > 35 for a long period
 - 10m: need SFI > 100 and/or SN > 70 for a long period
 - Ideally you should use smoothed values, but many weeks is good enough
- Where we are right now
 - Smoothed SFI ~120 and smoothed SN ~90

Where Do We Get These Parameters?

- One place is the NØNBH banner at <u>www.qrz.com</u>
- SFI, SN, K, Bz, SW are in the gold boxes
- Note MUF US Boulder in the gold box at the bottom
 - This is the MUF over the Boulder ionosonde assuming it's the midpoint of a 3000 km path (for example, W6 to the Midwest)
 - It is pretty close to real-time (every 15 minutes)

NØNBH banner at www.qrz.com

This morning at 6:28 AM PST

When Do Disturbances Occur?

CMEs and big solar flares

solar min

The A index maximizes at solar max (CMEs), and maximizes even higher during the decline of a solar cycle (CHs)

- CMEs most prevalent around solar max
 - Geomagnetic storm
- Big solar flares most prevalent around • solar max
 - Solar radiation storm and radio blackout
- Coronal holes most prevalent during the decline of a solar cycle
 - Geomagnetic storm •
- Quietest time of a solar cycle is the ascent
- Geomagnetic storm is the worst of the three disturbances due to its duration and effect on the worldwide F₂ region

Real-Time Assessment of the Bands

- If you don't want to mess with propagation predictions or with all those space weather parameters, go to <u>dxmaps.com</u>
- Select a view (world, NA, . . .)
- Select a band
- Similar websites/applications for a real-time assessment
 - KC2G MUF map (see next slide)
 - PSKreporter
 - WSPRnet
 - Reverse Beacon Network
 - IARU/NCDXF beacons
 - ViewProp by ZL2HAM
 - WX6SWW (space weather woman)

Real-Time MUFs

mufd 2023-01-17 14:45 eSFI: 134.7, eSSN: 96.4

What We Can Expect in 2023

- 160m, 75m/80m, 60m, 40m (absorption is critical)
 - Should be good at night 160m kind of iffy because of disturbances
- 30m, 20m, 17m
 - Should be great all year
- 15m, 12m, 10m (MUF is critical)
 - Should be great for winter/spring contests (ARRL Int'l DX in Feb and Mar, et al)
 - Should be great for fall/winter contests (CQ WW DX in Oct and Nov, et al)
 - IARU contest in July will suffer from degraded summer propagation (but watch for sporadic E)
- 6m F2 (MUF is critical)
 - F2 should be even better this coming fall/winter
 - Check when K index spikes to 5 and 6
 - Don't forget sporadic E in the summer

What Got Me Interested in 10m Long Path

- CQ WW DX PH in October 1986
 - I was K9LA/5 in the DFW area from April 1979 July 1988
- Local 2m DX net announced VS6DO (Hong Kong) on 28510 via long path
 - Easily worked him at 1411 UTC (8:11 AM local)
 - 400 Watts (GLA-1000) to a Cushcraft A3 tri-bander at 40 feet
- Acquired logs from Gus K2ARO, Jerry N6AV (SK), John NT5C (SK), Bill K5FUV, et al
- Skeds with Yuu JH3DPB (SK) in April 1992 (I was in Ft Wayne now)
 - Longest duration QSO was 2 hr 15 min
 - Began at 1100 UTC (6:00 AM for me, 8:00 PM for Yuu)
 - Ended at 1315 UTC (8:15 AM for me, 10:15 PM for Yuu)

Typical 10m Long Paths

- Mar 22nd to Sep 22nd most productive
 - 90% of JA QSOs, 77% of VK6 QSOs
- Before Mar 21st and after Sep 23rd
 - 10% of JA QSOs, 23% of VK6 QSOs

K2ARO Data

- 10m long path available from March thru October
- More pronounced drop out to VK6 in the summer months
 - Suspect that VK6 is more multi-hop whereas JA can have TEP hop

The Big Picture for North America

evening long path

morning long path

The big question is anyone on the other end?

For more details: <u>https://k9la.us/A Refresher on 10m Long Path.pdf</u>

Summary

- Cycle 25 is awake and still going up
- Solar maximum likely in 2024/2025
- So far it kind of looks like another small cycle
 - But January has much greater SFI/SN let's hope it continues
- Even if it is a small cycle, now and around solar maximum will offer worldwide propagation with modest power and simple antennas on 15m, 12m and 10m
- Should have more 6m F2 propagation in the fall/winter months
- The digital modes offer an advantage over CW and SSB
 - Can decode a signal farther down in the noise
 - This is a big deal on 10m and 6m where the MUF is critical
- There are tools on the internet to determine what the bands are doing right now
- Check out 10m long path
 - Applies to 15m and 12m, too

